BIOLOGY

Paper 2 AS Level Structured Questions
MARK SCHEME
Maximum Mark: 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:
the specific content of the mark scheme or the generic level descriptors for the question the specific skills defined in the mark scheme or in the generic level descriptors for the question
the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:
marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
marks are awarded when candidates clearly demonstrate what they know and can do
marks are not deducted for errors
marks are not deducted for omissions
answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark scheme abbreviations

;	separates marking points
R	alternative answers for the same point
A	reject
AW	accept (for answers correctly cued by the question, or by extra guidance)
underline	alternative wording (where responses vary more than usual)
max	actual word given must be used by candidate (grammatical variants accepted)
ind	or reverse argument
mp	marking point (with relevant number)
ecf	error carried forward
I	ignore
AVP	alternative valid point

Question	Answer					Marks
1(a)	bronchiole ; I respiratory / terminal, before bronchiole					1
1(b)	(actual diameter) $=$ image / observed, length, \div magnification; $A(A=) I \div M$ or magnification triangle					2

Question	Answer	Marks
1(c)	any four from in healthy lungs 1 correct direction of movement of both respiratory gases ; e.g. oxygen from alveolus towards blood and carbon dioxide from blood to alveolus; oxygen enters the blood system and carbon dioxide leaves A red blood cell / haemoglobin, as ref. to blood 2 diffusion (of, oxygen / carbon dioxide) or movement, down a concentration gradient / from high(er) to low(er) concentration ; A implied e.g. oxygen enters blood from a higher concentration I diffusion of gases 3 detail of pathway; \mathbf{R} ref. to cell walls e.g. across, alveolar wall / squamous (epithelial) cells across endothelium / capillary wall ; A squamous cells in context of capillary crosses two layers of cells (alveolar wall and capillary wall) comparison healthy with diseased - look for ora 4 higher rate of exchange / increased rate of diffusion / steeper concentration gradient ; A more oxygen to blood per unit time / more carbon dioxide to alveolus per unit time I more efficient gas exchange I better gas exchange / faster diffusion 5, 6 AVP ; ; e.g. larger surface area (for, gas exchange / diffusion) shorter diffusion distance ref. to (greater) ability to, stretch / recoil (for ventilation to maintain gradient) or ref. to elasticity (more v fewer elastic fibres is not sufficient)	4

Question	Answer	Marks
2(a)	xerophyte / xerophytic; R succulent / cactus / named	1
2(b)(i)	phloem ; A sieve tube(s) A sieve tube elements$\quad$$\mathbf{R}$ phloem sieve / phloem tube \mathbf{R} phloem companion cell	1
2(b)(ii)	any two from 1 for, transport/translocation, or movement / AW, from source to sink ; I ref. to transport of, amino acids / sucrose 2 ref. to source, is place of synthesis / AW or sink is / movement to, area where not manufactured / storage area / area where they are required ; 3 as defence mechanism (e.g. against sap feeders) ;	2
2(c)(i)	using / AW, water / $\mathrm{H}_{2} \mathrm{O}$; to break bond (between phosphate groups) ; \mathbf{R} if bond incorrectly named	2
2(c)(ii)	active transport ;	1

Question	Answer	Marks
2(c)(iii)	any four from 1 (reversibly) binds / attaches / AW, to, allosteric site / site other than active site ; 2 (which) changes, shape / tertiary structure / 3-D structure, of active site ; A active site distorted I protein structure 3 substrate / ATP, cannot, enter / bind / fit / AW, to active site ; A active site no longer complementary to substrate A enzyme substrate / ES, complexes cannot form A ESCs cannot form I ATP / substrate, cannot bind to enzyme without a link to active site 4 no / less, hydrolysis of ATP A breakdown or no / less, energy released; I no energy, synthesised / created / produced $5 \mathrm{Na}^{+}$not moved, out and K^{+}not moved in ; I active transport, stops / decreases	4

| Question | Answer |
| :---: | :---: | :---: |$|$ Marks

Question	Answer	Marks
2(d)(ii)	I ref. to fibrillation / cardiac cycle rhythm any three from 1 more powerful contraction of (cardiac) muscle / increased ability for (cardiac) muscle (A cardiac cells) to contract ; A stronger contraction / contract strongly / increased contractility I contracts more / increased contraction 2 blood (pumped) at higher pressure ; I blood at high pressure 3 more force to overcome resistance (in blood vessels) ; 4 more blood reaches lungs to obtain oxygen (per unit time) / more oxygen reaches (rest of) body / tissues (per unit time) (in blood) ; allow idea of efficient delivery of oxygen A more oxygenated blood can be delivered to heart, muscle / tissue AW 5 less fatigue / increased energy / increased mobility / AW ;	3

Question	Answer	Marks
3(a)	any two from 1 (division that) produces, new / daughter, cells A produces more cells or (so) replaces, damaged / lost/dead, cells; 2 new / daughter, cells, genetically identical ; A ref. to clone if correct context A genetic information not lost I same number of chromosomes 3 (all) new cells can retain function ; AW	2
3(b)	any two from 1 cell cycle continuous / continually divide / AW ; 2 (produce cells that) can, differentiate / specialise / described; A multipotent / pluripotent I totipotent divide to produce a cell that can divide and a cell that differentiates $=2$ marks 3 can produce, cells / tissue, that can still function (as before);	2

Question	Answer	Marks
3(c)	any three from 1 chemicals (released) are cell signalling, molecules / compounds ; 2 liver cells, are target cells; A liver tissue for liver cells 3 binding of, chemicals / cell signalling molecules, to receptors (of liver cells) ; \mathbf{R} receptor cells 4 ref. to specificity (of receptors) / chemicals complementary to receptors ; if \boldsymbol{R} above, then allow ecf for idea of complementary 5 (specific) response is, cell enters the cell cycle / mitosis / cell division ; A DNA replication 6 AVP ; e.g. idea of communication between cells suggestion of detail following binding, e.g. second messenger activated / enzyme cascade /signal transduction / phosphorylation events / enzyme activation I cascade of reactions	3

Question	Answer	Marks
4(a)	any three from protein coat / capsid ; I protein layer nucleic acid ; DNA or RNA ; $\quad \mathbf{R}$ in nucleus I in cytoplasm I ref. to, double / single, strand acellular / not made of cells; I absence of named cell structures AVP ; e.g. ref. to capsomeres size 15 nm to 1000 nm accept any in range (some) are enveloped / have phospholipid bilayer I with glycoproteins	3
4(b)(i)	one value in the range $64 \%-68 \%$; $((940000-980000) \div(1440000-1480000)) \cdot 100$	1
4(b)(ii)	allow women for pregnant women and therapy/treatment, for ART any three from 1 (slight) decrease in (total) number of women living with HIV and (overall) increase in number of women living with HIV receiving ART ; 2 slight decrease / plateau / AW, between 2009 to 2010, in number of women living with HIV receiving, ART / therapy ; 3 proportion / percentage cover(age), of women receiving ART increases (in time period) ; A calculated values (approx. 13\% to 66\%) A number of women receiving ART increases more steeply than decrease in number of women living with HIV 4 data to support mp1 or 2 ; mp1 two years and, two values / manipulated data, for either curve mp2 two values, 2009 compared to 2010 or manipulated data allow ± 20000 for extracted values	3

\left.| Question | Answer |
| :---: | :---: | :---: |$\right]$ Marks

Question	Answer	Marks
4(c)(iii)	any one from immortal / long-lived ; able to replicate / capable of cell division ; uncontrolled cell division, can grow / survive, in cell culture ; cannot grow on, HAT / hypoxanthine-aminopterin-thymidine / step 4, (culture) medium ; A do not have gene coding for ability to grow on HAT	$\mathbf{1}$
4(c)(iv)	hybridoma ; $4(c)(v)$ any one from (check cells for) production / AW, (by hybridoma cells) of, anti-HIVp24 antibody / antibody against p24 ; A the antibody / monoclonal antibody A check cells, contain / have / AW, desired antibody / AW idea that only want cells that produce desired antibody / do not want cells that produce different antibodies / need to remove cells that don't produce the antibody ; waste of, money / resources, to culture other cells / if no antibody produced ;	$\mathbf{1}$

Question	Answer	Marks
6(a)	rough endoplasmic reticulum protein / polypeptide / named protein, synthesis / transport / modification ; A post-translational modification/ examples named protein e.g. haemoglobin, carbonic anhydrase, membrane proteins Golgi body modification / processing, of, proteins / lipids A post-translational modification/ examples / makes proteins functional or packaging (molecules) into vesicles or formation of, Golgi / secretory, vesicles or forms (primary) lysosomes ; centrioles formation of, spindle fibres / spindle or microtubule organisation ;	3
6(b)	A iron / Fe ; I oxidation status of Fe A iron atom / iron ion \mathbf{R} iron molecule B carbaminohaemoglobin ; C haemoglobinic acid ;	3

